Polarimetric Pose Prediction ECCV 2022
- Daoyi Gao*
- Yitong Li*
- Patrick Ruhkamp*
- Iuliia Skobleva*
- Magdalena Wysocki*
- HyunJun Jung
- Pengyuan Wang
- Arturo Guridi
- Benjamin Busam
- Technical University of Munich
- * Equal contribution. Alphabetical Order.
Abstract
Light has many properties that vision sensors can passively measure. Colour-band separated wavelength and intensity are arguably the most commonly used for monocular 6D object pose estimation. This paper explores how complementary polarisation information, i.e., the orientation of lightwave oscillations, can influence the accuracy of pose predictions. A hybrid model that leverages physical priors jointly with a data-driven learning strategy is designed and carefully tested on objects with different levels of photometric complexity. Our design significantly improves the pose accuracy in relation to state-of-the-art photometric approaches and enables object pose estimation for highly reflective and transparent objects. A new multi-modal instance-level 6D object pose dataset with highly accurate pose annotations for multiple objects with varying photometric complexity is introduced as a benchmark.
Proposed Pipeline
Qualitative Results
Citation
Acknowledgements
The website template was borrowed from Michaƫl Gharbi.